Skip to main content

Using the Order of Operations

Use the order of operations to evaluate each of the following expressions.

a3224(6+2)\text{\textcircled{a}} \enspace {3\cdot2}^2-4(6+2) \quad b5247112\text{\textcircled{b}} \enspace \frac{5^2-4}{7}-\sqrt{11-2} \quad c658+3(41)\text{\textcircled{c}} \enspace 6-|5-8|+3(4-1) \quad d14322532\text{\textcircled{d}} \enspace \frac{14-3\cdot2}{2\cdot5-3^2} \quad e7(53)2(63)42+1\text{\textcircled{e}} \enspace 7(5\cdot3)-2|(6-3)-4^2|+1

Solution

a\text{\textcircled{a}}

3224(6+2)=(6)24(8)Simplify parentheses.=364(8)Simplify exponent.=3632Simplify multiplication.=4Simplify multiplication.\begin{alignat*}{3} {3\cdot2}^2-4(6+2) &= (6)^2-4(8) &&\quad \text{Simplify parentheses.} \\ &= 36-4(8) &&\quad \text{Simplify exponent.} \\ &= 36-32 &&\quad \text{Simplify multiplication.} \\ &= 4 &&\quad \text{Simplify multiplication.} \\ \end{alignat*}

b\text{\textcircled{b}}

5247112=52479Simplify grouping symbols (radical).=52473Simplify radical.=25473Simplify exponent.=2173Simplify subtraction in numerator.=33Simplify division.=0Simplify subtraction.\begin{alignat*}{3} \frac{5^2-4}{7}-\sqrt{11-2} &= \frac{5^2-4}{7}-\sqrt{9} &&\quad \text{Simplify grouping symbols (radical).} \\ &= \frac{5^2-4}{7}-3 &&\quad \text{Simplify radical.} \\ &= \frac{25-4}{7}-3 &&\quad \text{Simplify exponent.} \\ &= \frac{21}{7}-3 &&\quad \text{Simplify subtraction in numerator.} \\ &= 3-3 &&\quad \text{Simplify division.} \\ &= 0 &&\quad \text{Simplify subtraction.} \\ \end{alignat*}

Note that in the first step, the radical is treated as a grouping symbol, like parentheses. Also, in the third step, the fraction bar is considered a grouping symbol so the numerator is considered to be grouped.

c\text{\textcircled{c}}

658+3(41)=63+3(3)Simplify inside grouping symbols.=63+3(3)Simplify absolute value.=63+9Simplify multiplcation.=3+9Simplify subtraction.=12Simplify addition.\begin{alignat*}{3} 6-|5-8|+3(4-1) &= 6-|-3|+3(3) &&\quad \text{Simplify inside grouping symbols.} \\ &= 6-3+3(3) &&\quad \text{Simplify absolute value.} \\ &= 6-3+9 &&\quad \text{Simplify multiplcation.} \\ &= 3+9 &&\quad \text{Simplify subtraction.} \\ &= 12 &&\quad \text{Simplify addition.} \\ \end{alignat*}

d\text{\textcircled{d}}

14322532=1432259Simplify exponent.=146109Simplify products.=81Simplify differences.=8Simplify quotient.\begin{alignat*}{3} \frac{14-3\cdot2}{2\cdot5-3^2} &= \frac{14-3\cdot2}{2\cdot5-9} &&\quad \text{Simplify exponent.} \\ &= \frac{14-6}{10-9} &&\quad \text{Simplify products.} \\ &= \frac{8}{1} &&\quad \text{Simplify differences.} \\ &= 8 &&\quad \text{Simplify quotient.} \\ \end{alignat*}

In this example, the fraction bar separates the numerator and denominator, which we simplify separately until the last step.

e\text{\textcircled{e}}

7(53)2(63)42+1=7(15)2(3)42+1Simplify inside parentheses.=7(15)2(316)+1Simplify absolute value.=7(15)2(13)+1Subtract.=105+26+1Multiply.=132Add.\begin{alignat*}{3} 7(5\cdot3)-2|(6-3)-4^2|+1 &= 7(15)-2|(3)-4^2|+1 &&\quad \text{Simplify inside parentheses.} \\ &= 7(15)-2(3-16)+1 &&\quad \text{Simplify absolute value.} \\ &= 7(15)-2(-13)+1 &&\quad \text{Subtract.} \\ &= 105+26+1 &&\quad \text{Multiply.} \\ &= 132 &&\quad \text{Add.} \\ \end{alignat*}

Case

The above case, including the title and solution, is attributed to College Algebra 2e. Page 13-14.

Q&A

What are order of operations?

Page 12-13, College Algebra 2e

Operations in mathematical expressions must be evaluated in a systematic order, which can be simplified using the acronym PEMDAS:

  • P(arentheses)
  • E(xponents)
  • M(ultiplication) and D(ivision)
  • A(ddition) and S(ubtraction)

Glossary

Denominator

https://en.wiktionary.org/wiki/denominator

The number or expression written below the line in a fraction (such as 2 in ½).

Last accessed

December 26, 2023

Fraction

https://en.wikipedia.org/wiki/Fraction

A fraction represents a part of a whole or, more generally, any number of equal parts.

Last accessed

December 26, 2023

Numerator

https://en.wiktionary.org/wiki/numerator

The number or expression written above the line in a fraction (such as 1 in ½).

Last accessed

December 26, 2023

Order of Operations

https://en.wikipedia.org/wiki/Order_of_operations

The order of operations is a collection of rules that reflect conventions about which operations to perform first in order to evaluate a given mathematical expression.

Last accessed

January 01, 2024

note